
 1

Video Client 2

A Program to Analyse Video Frames

Programmer's Documentation

by Stefan Weiße

sweisse@ifh.de

March 18, 2003

 2

Table of Contents

1. Introduction .. 3

2. Overview of the Classes ... 4

2.1. Class Chart .. 5

2.2. Description of the Classes ... 6

2.3. Application Flow ... 10

3. Selected Documentation of Details .. 12

3.1. Protocol of the Socket Connection .. 12

3.2. Protocol of the TINE frame transfer ... 14

3.3. Description of the Configuration File ... 15

3.4. Description of the File Formats of the Video Client ... 17

4. Compile Guide .. 19

 3

1. Introduction

This program is meant to analyse spots on video frames. It is needed in the PITZ experiment, be-

cause the optimisation of an electron gun is only possible based on an extended diagnostic system

including a Video-system. The goal is to measure the electron beam position and the profile of

the beam at different places and by different diagnostic tools along the beam line.

Using this program one is able to continuously receive frames ('Poll Mode') or acquire a certain

amount of frames ('Grab Mode') from a server. It is possible to apply some analysis on the frames

like X-ray filtering, background subtraction, normalization, spot centre and size detection based

on multiple algorithms, false colour mode etc. One is able to load and save frames as well as

background images using certain file formats.

Due to heavy optimisation techniques the program is able to apply most calculations in real-time.

On a Pentium III 1000 MHz one is able to watch the video 'with all eye candy on' at 10 Hz.

MMX instructions and special instructions of Pentium II and faster processors were used. So at

least a Pentium II processor is required. Recommended is a Pentium III 866 MHz or faster pro-

cessor. On a Pentium IV PC >= 2 GHz it is possible to run two instances simultaneously (with all

eye candy on) watching at two different cameras at 10 Hz.

The frames come in either by a socket connection or via TINE protocol in multicast operation

mode. The frames are compressed. A loss-less real-time compression with a compression ratio of

about 2:1 to 3:1 is used. Sending uncompressed frames over the network would eat up the band-

width of a 100 MBit network. A single frame is made up out of greyscales with a width of 768

pixels and a height of 574 pixels. Sometimes frames are rotated so width and height can be

swapped.

Apart from the socket connection to receive the frames, it is possible to control the server. One

can switch the camera port from which frames are grabbed. A server can have up to 4 cameras

connected to it, but from only one camera can be grabbed at a given time. This control connection

is implemented using the TINE protocol. The TINE protocol is also used to transfer camera port

description strings, scale values, width and height of certain camera ports etc. from server to cli-

ent.

Key features of the client:

- multi-threaded

- real-time decompression of loss-less compressed images

- highly optimised algorithms (all of them can be applied in real-time)

- switching of the camera port

- spot size and centre calculation using straightforward or Fourier analysis

- background subtraction, X-Ray filtering, normalization, false colour mode

- selectable area of interest

- projections (X and Y) of the video signal

- driven by configuration file

The client is written in C++ language, by making use of the integrated development environment

Microsoft Visual C++ 6. Inline assembler is used in some speed critical parts of the program. The

 4

source code is about 20000 lines long (660 KB) including comments. It is very well inline com-

mented.

Information on how to use the software is collated in the Video Client User Documentation. This

documentation is meant only for programmers, who want to understand how the software works.

2. Overview of the Classes

The program is constructed out of 26 classes. Most classes are helper classes for the main class of

the application, which is the CVideoclntDlg class. The CVideoclntDlg class is the class behind

the video client's main dialog and manages the whole program.

At first, the classes are enumerated and a short description what each class does is given.

Class Description

CAboutDialog about dialog of the application

CACOP wrapper class of the ACOP ActiveX control

CAdditionalInformation dialog class to enter additional information when saving files

CBMPFileHelper helper class for BMP file support

CBogusTineDlg bogus dialog for receiving frames using TINE protocol

CCATineDlg bogus dialog for receiving magnet current information

CCompression decompression of the compressed video frames

CConfigDlg configuration dialog class

CFourierStat spot centre and size detection based on Fourier analysis of the frames

CImageAcquire wrapper class for image acquire from server

CImageSequence class to hold the image/image sequence and additional properties

CIniEx class for accessing the initialisation file

CLaserPowerCalc loading of lookup-table and calculation of laser power based on LUT

CMemoryManagement aligned memory allocation and wrapper for memory copy

CMessagesDlg window class for the messages dialog (extended information and log)

CMyVideoFrame class for capturing mouse events on the video frame (onto the dialog)

CPrinterSettings class which saves the settings from printer dialog for next showing

CPtrQueue a pointer queue for transmitting frames across thread boundaries

CServer encapsulates all properties for a single server

CServerList list to store all connected servers

CStat base class for spot centre and size detection, needed by CFourierStat

CStatEmpty CStat without statistical analysis, needed when statistics are off

CStatFile wrapper class around the statistical classes

CVideoclntApp application class, just instantiates the main dialog

CVideoclntDlg main class of the video client, manages the whole application

SSyncSocket fast synchronous socket class

 5

2.1. Class Chart

 6

2.2. Description of the Classes

CAboutDialog about dialog of the application

This class is a dialog resource wrapper class in order to display the about dialog of the applica-

tion. It is used in CVideoclntDlg class.

CACOP wrapper class of the ACOP ActiveX control

This class was entirely generated by Visual C++. It is a wrapper class in order to properly access

the 'ACOP' ActiveX control, which is a TINE client. Using this wrapper class the control connec-

tions, like changing the camera port and requesting and receiving the camera strings from the

server were implemented.

This class is used in CVideoclntDlg class.

CAdditionalInformation window class to enter additional information (saving files)

This is the wrapper class for the 'Additional Information' dialog resource ('IDD_DIALOG1'),

which pops up when saving files or backgrounds. It consists of some wrapper code as well as a

lot of call-back procedures which react to certain events.

This class is used in CImageSequence class.

CBMPFileHelper BMP file access functions

This class contains useful helper functions when working with BMP files. Using this class the

application is able to read and write BMP files. It is used through CImageSequence class. It is

also used in CVideoclntDlg for saving and loading backgrounds in BMP format.

CBogusTineDlg bogus dialog for accessing a TINE control for receiving frames

This class creates a bogus dialog in order to access the TINE ActiveX control for receiving

frames using TINE multicast. It is used in CImageAcquire class.

CCATineDlg bogus dialog for accessing a TINE control for magnet properties

This class creates a bogus dialog in order to be able to retrieve magnet current information for

main solenoid and bucking coil. It is used in CImageSequence class.

CCompression decompression of the compressed video frames

This class is needed for decompression of the video frames. It encapsulates all functionality that

is needed to decompress the video frames that come in through the socket connection or via

TINE protocol. This class is used in CImageAcquire and CBogusTineDlg class.

 7

CConfigDlg configuration dialog class

This is the MFC class for the configuration dialog. It is connected tightly to the resource of the

configuration dialog. By using the dialog the user is able to change the preferences of the applica-

tion. The required preferences are loaded from and saved to a configuration file by use of the

CIniEx class. There are some functions that get activated when the user makes certain operations

on the dialog's controls ('On…'-functions).

Using the configuration dialog, one can force reinitialisation of server settings, select snapshot

directory, repetition rate and transfer mode. This class is used in CVideoclntDlg class.

CFourierStat spot centre and size detection based on Fourier analysis

This class inherits the CStat class. It replaces the spot centre and size calculation . These values

are calculated based on Fourier analysis. This class is needed for proper calculation of spot centre

and size. In addition to the spot centre and size detection of the spot the class also does back-

ground subtraction, normalization and calculation of the projections.

This class is used in CStatFile class.

CImageAcquire encapsulation of acquiring images from the server

Using the CImageAcquire class, the application is able to acquire frames from the server using

poll or grab mode. The transfer mode is autodetected and the frames are also decompressed here.

The class supports TINE multicast mode through access to CBogusTineDlg and pure streaming

socket connections. This class is used in CVideoclntDlg class.

CImageSequence encapsulation of images / image sequences and image properties

The class CImageSequence encapsulates the access of frame buffers and holds all properties that

describe a frame. Inside the class, the DOOCS and Channel Access properties that can be stored

together with a video frame file are acquired when necessary. In addition, raw image files can be

loaded and saved. This class is used inside CVideoclntDlg class.

CIniEx class for accessing the initialisation file

This class is needed for initialisation file handling. It is an external class, which was downloaded

from the web. One can load and save an initialisation file and access the members of the file

through a Section/Key/Value schema.

This class is used in CVideoclntDlg and CConfigDlg class.

 8

CLaserPowerCalc loading of lookup table and calculation of laser power in J

Using the CLaserPowerCalc class it is possible to calculate the Laser power of the spot that is

seen on a video frame. In addition, a lookup-table that holds the calibrated laser power can be

loaded in.

CMemoryManagement aligned memory allocation and wrapper for memcpy()

The CMemoryManagement class is a wrapper class for aligned memory allocation and mem-

cpy(). One can easily add different implementations of aligned memory allocation and memory

copy routine(s).

This class is global to the whole application.

CMessagesDlg window class for the messages dialog (log)

This is a class for handling a separate messages window. It is useful for debugging. In addition,

every status line which is displayed is logged onto the messages window.

This class is used in CVideoclntDlg class.

CMyVideoFrame class for capturing mouse events on the video frame

This class is needed to capture the mouse events that are happening on the video frame. This is

done by inheriting from CStatic class and extending the class by the needed functionality.

This class is used in CVideoclntDlg class.

CPrinterSettings stores current printer settings

The class CPrinterSettings is needed to store the current printer settings for subsequent calls of

the printer dialog. This is an external class and was downloaded from the web.

This class is used in CVideoclntDlg class.

CPtrQueue a pointer queue for transmitting frames

This class was written to transport grabbed frames across thread boundaries. One inputs the

pointer to the frame on one side, and on the other side it is possible to get the pointer out of the

queue. The whole class is thread-safe at object level. This is achieved by using the MFC syn-

chronisation classes CSingleLock and CCriticalSection.

This class is used in CVideoclntDlg, CBogusTineDlg and CImageAcquire class.

 9

CServer encapsulation of server properties

The class CServer is used for storing settings that belong to a server. A server is the hard-

ware/program combination from which frames are aquired. A server has settings like TINE

Eqpname, listen port, hostname, scale values, camera port description strings, width and height of

images and bits per pixel setting. This class is used inside CServerList and CVideoclntDlg.

CServerList linked list of all installed servers

This class stores the list of servers that can be used in the client. One is able to add and delete

servers and get the desired server class out of the list. This class is used inside CVideoclntDlg

class.

CStat base class for spot centre and size detection (straightforward)

This class is the base class for statistical analysis of the video data. It features spot centre and size

calculation based on 'Weight of the Masses' algorithm. In addition to this, the class also features

background subtraction, normalization, calculation of the projections and X-ray filtering.

This class is used in CStatFile class.

CStatEmpty CStat without statistical analysis, needed when statistics are off

This class is like a sister class of CStat. It is needed when statistics are switched off. Nearly no

calculation/analysis takes place. Only the background is subtracted and the image is maybe X-

Ray filtered. From the public members point of view, the class looks the same as CStat class.

This class is used in CStatFile class.

CStatFile wrapper class around the statistical classes

This class does the statistical analysis. It makes use of CStatEmpty, CStat and CFourierStat clas-

ses to support no, straightforward and fourier statistics. It is kind of an extension to the other stat.

classes to support analysis of multiple images in a batch. When multiple images are analysed in a

batch, the results are averaged (mean values) over all analysed images.

This class is used in CVideoclntDlg class.

CVideoclntApp application class, just instantiates the main dialog

This is the main application class. The execution path starts here. It is responsible for properly

starting up the main application dialog (CVideoclntDlg). All functionality is then handled there.

CVideoclntDlg main class of the video client, manages the whole application

This is the main class of the application. All other classes are just helper classes for this main

class. Most events are received here and processed accordingly. There are a lot of 'On…' func-

tions which react on the menu entries, hotkeys and controls.

 10

SSyncSocket fast synchronous socket class

The class SSyncSocket provides socket functions to the application. It encapsulates the raw Win-

dows socket API. It is synchronous, which means that each operation, which can not be pro-

cessed immediately, blocks the execution flow. Because of this, most of the functions are only

called from threads, in order not to block the main execution flow.

This class is used in CVideoclntDlg class.

2.3. Application Flow

In this section, a short overview of the execution flow of the application is presented. When the

program is started, the InitInstance() procedure in CVideoclntApp class instantiates the main

window of the application (CVideoclntDlg class). Then the main execution flow starts at

OnInitDialog() function in CVideoclntDlg class. Inside this function, the main initialisation takes

place. All member variables are set to their default value, the memory locations for storing

grabbed frames, backgrounds, normalized images etc. are allocated. The initialisation files are

read in or created, if the files could not be found. The camera names of all servers together with

the camera port scales and other important information (width, height and bits per pixel setting of

video frames) are downloaded from the servers specified in the config files using TINE protocol.

In addition, the decompression and drawing subsystem of CVideoclntDlg are initialised. If some-

thing terribly happens, the program displays an error message and the whole application quits.

If all initialisation goes well, the program starts listening for user actions like pressing buttons or

hotkeys, selecting menu entries or moving the mouse. The flow of some special functionality of

the program will now be presented.

Poll Mode

When poll mode is switched on by hotkey or via the menu, the procedure StartPollMode() of

CVideoclntDlg() is called. This function calls another function StartPollMode() inside CImage-

Acquire class. This function checks whether TINE protocol or streaming sockets should be used

to transfer the video frames from server to client. If TINE protocol is available, another class

CBogusTineDlg is called and the transfer using TINE protocol is started. For streaming socket

mode, the CImageAcquire class has all functionality to acquire the frames over the socket con-

nection built in. If socket mode is selected, the socket is instantiated and connected to the server.

If everything goes well, the receive thread is started.

For socket mode, the frames are acquired using a thread. In TINE mode, it is a bit different. An

event function is called for every new frame that comes in. Both routines first decompress the

frame and put the frame into the receive queue (CPtrQueue) afterwards. In addition, for every

frame there is a Windows message posted, which results in the main thread that the function On-

FrameReceived() is called.

 11

In this OnFrameReceived() function, the current chosen statistical analysis is done on this frame.

This is done through the CStatFile class, which chose the proper statistical analysis class. Inside

the proper analysis class, the chosen statistics are calculated, the background is subtracted and the

area of interest is possibly normalized, the projections are calculated etc.

After the statistical analysis, the processed frame is displayed using DisplayFunction() method of

CVideoclntDlg class. Inside this function, the frame is drawn (using Windows DrawDib() API)

and stored as the last frame (if it needs to be redrawn). In addition, the statistical values, the pro-

jection area (if necessary), the mouse cross, the red frame around the area of interest are drawn.

The DisplayFunction() is a complete redraw of the application window. After a successfull call to

the DisplayFunction(), some values regarding to poll mode are updated on the toolbar.

The last two paragraphs are traversed for each new frame that comes in.

When the user wants to switch of poll mode, the function StopPollMode() is started. This func-

tion calls the function StopPollMode() inside CImageAcquire. Using this function, either the re-

ceive thread is shut down (for socket mode) or the link to the server (TINE mode) is closed.

After this, some variables will be cleaned up for the next start of poll mode. This is everything

that needs to be done. By shutting down the receive thread or closing the link to the server one

can be sure that the function OnFrameReceived() will not be called again.

Grab Mode

It makes no difference how many frames will be grabbed. For every grabbing frames process, the

function GrabFramesFromServer() in class CVideoclntDlg is called. In the parameter list, one

specifies how many frames should be grabbed and the width and height of a frame. The function

GrabFramesFromServer() inside CVideoclntDlg class calls the function GrabFrames() inside

CImageAcquire class. This function decides whether TINE protocol can be used to acquire the

frames or socket mode should be used.

For socket mode, all required functionality are built into the CImageAcquire class. At first the

socket (SSyncSocket class) is instantiated and connected to the passed server. If the connect is

successful, the grab thread is started. Then the function wait for the grab thread to finish or a

timeout occurs. All received frames are decompressed and put into a pointer queue (CPtrQueue).

For TINE mode, the CImageAcquire class calls a second class (CBogusTineDlg) which handles

the grabbing of frames using TINE protocol. A link to the server is opened and through a notify

function the frames are acquired from server, decompressed and put into a pointer queue

(CPtrQueue).

During grab mode, some windows messages can be posted to the main application. These are:

ID_MSG_SOERRGRAB posted when an error happened on grabbing frames

ID_MSG_GRABFINISHED posted when grabbing has finished without errors

ID_MSG_FRAMEARRIVED posted for every new frame that arrives on client side

The main application class react on these messages and calls the function of CImageAcquire

class in order to properly shut down and clean up grabbing. If any of the first two messages is

posted, the function GrabFramesCleanup() of class CImageAcquire is called to properly clean up

 12

after grab mode. After this, the function GrabFramesFromServerCallback() of CVideoclntDlg

class is called. This function first checks for the validity of frames. If the frames are valid, they

are statistically processed using the CStatFile class. The behaviour is the same as for poll mode.

After processing the frame(s), the resulting image is displayed (DisplayFunction()) and all ap-

propriate controls are updated.

Quit Application

When quitting the application, either by pressing the 'X' on the title bar or selecting Application->

Quit from the menu, the function QuitApplication() is called. This function checks whether poll

mode is still active and shuts down the poll mode if necessary. After this, the memory blocks

(background, normalized image, grab buffer etc.) are freed. Then the drawing, initialisation file

and decompression subsystems are shut down. After this, the application is closed.

3. Selected Documentation of Details

3.1. Protocol of the Socket Connection

The protocol between server and client is pretty simple. After the client successfully connects to

the server, the server starts to send one video frame after another. Up to now, the server receives

nothing through the socket connection.

A full frame is made out of two or three parts. It depends whether the frame is compressed or not.

At first, the video header is send out for each frame. This structure is 88 bytes long and contains

several important information concerning the frame. For example, the frame number, a

timestamp, a compression flag, length of the frame bits and much more useful information is

transmitted.

After the video header, the raw data follows. When a frame is send out compressed, a second

header (format header) is transmitted after the video header. This header is needed by the codec

for properly decompressing the video frame. Because the decompression routines are built into

the client, this header is more or less useless. For compatibility reasons, this header is still trans-

mitted. Later, it could be that this header is needed again. Also some old versions of the video

client rely on this format header.

After the format header, the frame bits follow. The size of the frame bits is encoded in the video

header (VIDHDR.len_data).

If a frame is send out uncompressed, the format header is omitted. Just after the video header the

uncompressed frame bits follow. The size of the uncompressed frame bits is also encoded in the

video header (VIDHDR.len_data).

An algorithm to receive the frames through a socket connection would be:

- read in the video header (88 bytes)

 13

- is the frame compressed ? (VIDHDR.compressed == 1)

- if yes, read in format header (length: VIDHDR.len_fmthdr)

- if yes, read in compressed frame bits (length: VIDHDR.len_data)

- if not, read in uncompressed frame bits (length: VIDHDR.len_data)

- go to start

When the compressed frame bits are read into a memory location, one should add at least 8 bytes

for safety to the memory location. This is needed for properly decompressing the frame bits. To

decompress the frames, one can use the CCompression class of the Video Client.

In the following lines, details are explained concerning the video header. Looking at the source,

the structure has the following design:

typedef struct {

 UINT kennung; // 0x11223344;

 UINT compression; // FOURCC codec name

 UINT len_total; // length of data + formatheader + vidhdr

 UINT len_data; // length of the data (compressed image)

 UINT len_fmthdr; // length of the format header (needed for

 // decompression on windows side)

 UINT frameno; // since starting the grabserver

 _timeb timestamp; // time in milliseconds since 1970 // _ftime() _timeb

 // structure

 INT cameraport; // port of the camera (0..3)

 UINT widthframe; // width of the frame in pixels

 UINT heightframe; // height of the frame in pixels

 UINT compressed; // 1= picture is compressed

 // 0= picture is not compressed because if it would be

 // compressed it would be too big

 double framerate; // floating point: average number of frames per second

 double scale; // floating point: scale value of the video frame

 UINT bpp; // bits per pixel settings of the video frame

 char reserved[12]; // 12 bytes reserved for future enhancements

} VIDHDR;

All data is transmitted in Little Endian format (Intel PC). If the data is read in on a different plat-

form (e.g. SUN (Big Endian)), the values must be converted accordingly.

In the following table the structure members are explained.

Name Description

kennung Identification (marker) of the video header, contains 0x11223344

compression FOURCC (Four Character Code) of the codec that was used

 The content would be MAKEFOURCC('H','F','Y','U').

len_total total length of the video frame (video header + (format header) + frame

bits) in bytes

len_data length of the frame bits in bytes

 14

Name Description (continued)

len_fmthdr length of the format header (for a compressed frame) in bytes, for an un-

compressed frame this member variable should be zero

frameno number of the frame (incremented by 1 for each frame)

timestamp timestamp taken the time the frame was acquired by the framegrabber card

cameraport the camera port the frame was taken from (0..3)

widthframe width and height of the video frame in pixels

heightframe

compressed flag that indicates whether a frame is compressed or not

 1 = frame was compressed; 0 = frame was not compressed

framerate floating-point variable with the actual framerate (about)

scale floating point variable with the scale factor of the video frame

bpp bits per pixel setting of the video frame

reserved[12] 12 chars reserved for future enhancements

3.2. Protocol of the TINE frame transfer

Aside from the socket connection, there exists another (preferred) possibility to acquire the

frames from the server. It is called "TINE multicast mode". Using this mode, the video frames are

transferred via multicast using TINE protocol to all connected clients. This saves network band-

width and server resources. Using the settings obtained from config file, the client knows how to

access the frame property using TINE multicast. For each server, there is an entry called

"TineEqpName" which is the Device Server in TINE terms. For accessing the server using TINE

protocol, 4 parameters are needed. These are:

Device Context: "PITZ"

Device Server: value of TineEqpName

Device Location: "device_0"

Device Property: "FRAME.GET"

Using this Context/Server/Location/Property scheme the client is able to connect to the server

and gets the frames. The frames are transferred using TINE Poll mode. The client asks every 50

milliseconds "Server, do you have any new frame?" The server either sends the new frame (if

there is any) and returns status code 0. If there is no new frame ready to be send out, the server

returns error status code 607. Using these 50 milliseconds the TINE connection is restricted to 20

 15

frames per second. If there should be more frames transmitted, one has to modify the POLL rate

to less than 50 milliseconds.

Using TINE protocol, on each receive event one gets a buffer with the current frame data in it.

This is only true if the status code that the server has sent back equals to zero. If the status code is

not zero, no frame data was transmitted to the client.

The frame data consist of a video header (see section 3.1), one optional frame header (for decom-

pression) and the raw video frame bits (either compressed or uncompressed). One should read out

the video header first and check the information contained in the video header. After examining

it, one knows whether the frame is valid, compressed or whether it contains an optional frame

header. Using this information, one can either decompress the frame or copy the uncompressed

frame bits into an appropriate memory location.

3.3. Description of the Configuration File

The client is driven by two configuration files. The first configuration file resides in the same di-

rectory as the executable and is called 'videoclnt2.cfg'. It contains the server settings, the default

server and the currently set repetition rate of the experiment. The second file resides in the user's

profile directory and is called 'videoclnt2_user.cfg'. In it, the snapshot directory is stored. There

can be a different snapshot directory for each user that uses the Video Client 2.

Although for most cases it is not necessary to modify the files by hand the entries are explained

here. One can adjust some of the settings through the configuration dialog of the Video Client.

The server settings can not be adjusted through the configuration dialog. Together with the exe-

cutable, one gets a default configuration file with preconfigured server settings. This settings

should only be changed by experts because filling in wrong values can render the server connec-

tions useless.

Both configuration files follow the Section/Key/Value schema. When the client is started, it looks

for the configuration files. If no configuration files could be found, the Video Client 2 creates de-

fault files.

 16

A example configuration file at the executables directory would be:

---- snip ----
[MAIN]

DefaultServer=ZNPPITZFG1

Servers=2

Server001=ZNPPITZFG1

Server002=ZNPPITZFG2

Framerate=0

[ZNPPITZFG1]

Servername=znppitzfg1

Portnumber=31777

TineEqpName=ZNPPITZFG1F

[ZNPPITZFG2]

Servername=znppitzfg2

Portnumber=31777

TineEqpName=ZNPPITZFG2F

---- snap ----

At first, there is the the main section. It consists of 4 or more key-value pairs (depending on the

number of servers). The entries that are always there are 'Servers',

'DefaultServer' and 'Framerate'. The two keys 'Server001' and 'Server002' are the two installed

servers. The number of 'ServerNNN' keys depends on the 'Server' setting above. In this example

there are 2 Servers ('Servers=2'). The two keys 'Server001' and 'Server002' specify the section

names of the two servers. For every server there exists a dedicated section, which will be ex-

plained later.

The 'DefaultServer' key specifies the server section that will be default when starting up Video

Client 2. When the client is started up and one starts polling frames the client will connect to this

server.

The 'Framerate' key specifies the approximate repetition rate the client expects from the server.

The value is of type integer and can range between 0 and 10. 1 would be 1 Hz repetition rate, 10

would be 10 Hz repetition rate. If zero is entered, the Video Client 2 will try to autodetect the

repetition rate.

In addition to the main section, there are optional sections which describe the details of the in-

stalled servers. The settings are required so that the client knows how to connect to the server.

A default server configuration would be:

[ZNPPITZFG1]

Servername=znppitzfg1

Portnumber=31777

TineEqpName=ZNPPITZFG1F

The Servername is the name of the server. The client uses this information to connect to the serv-

er using streaming sockets. It is the DNS name of the grabber server computer. The value is of

type string. Please pay attention, the server name is case sensitive.

 17

Together with the Servername, the client needs one more information to successfully connect to

the server using streaming sockets. This is the Portnumber. It is an integer value which can range

from 0..65535. The default value is 31777.

The third setting is TineEqpName. This is the Device Server in TINE terms. Using this setting

the client knows how to get frames using TINE protocol in multicast operation mode. The value

is of type string. Under normal conditions the TineEqpName is the Servername setting in upper

case plus an 'F'.

The second configuration file, stored in the user's profile directory, looks like this:

--- snip ---

[MAIN]

SnapshotDir=h:\

--- snap ---

The SnapshotDir key saves the actual snapshot directory the program needs for properly storing

the video frame snapshots. The value is of type string. One has to make sure that the directory

specified exists and is writable.

3.4. Description of the File Formats of the Video Client

Together with the application, two new file formats were created. The first one is called IMM

format and is meant for storing a bunch of unprocessed video frames into a file. The second file

format (BKG) is meant for storing background images in a file.

IMM File Format

In a IMM file, a certain number of frames can be saved. All frames go uncompressed into the file.

Together with the image data, there are some special variables saved into the file. These are

width and height of the frame as well as the proper scale value. The raw image data is stored pix-

el-by-pixel, line-by-line. Each pixel is an unsigned char (8-bit), a value of 0 means total black, a

value of 255 means pure white. Each pixel is one of 256 shades of grey.

The normal structure of such a file is as follows:

Pos Count Type Description

0 4 Integer width of the video frame

4 4 Integer height of the video frame

8 width*height Array of Char raw image data

width*height+8 8 Double scale value

 18

The structure repeats for the number of frames that are saved into an IMM file. All variables are

saved in Little Endian Format. One has to convert the numbers when loading in an IMM file on a

platform with a different Endian format (e.g. Sun).

An algorithm for loading in an IMM file is as follows:

- open the file

- determine file length

- read in the first four bytes and store as width

- read in the next four bytes and store as height

- calculate number of images inside the file

 (num = length / (width*height+16))

- seek to start of file

- repeat for every frame in the file

 - read in width and height

 - read in frame bits (width*height bytes)

 - read in scale

- close file

BKG File Format

The BKG file format is based on the IMM file format, except for two differences.

1. There is only one image inside the file.

2. There is no scale value saved.

All frames go uncompressed into the file. Together with the image data, there are some special

variables saved into the file. These are width and height of the image. The raw background image

data is stored pixel-by-pixel, line-by-line. Each pixel is an unsigned char (8-bit), a value of 0

means total black, a value of 255 means pure white. Each pixel is one of 256 shades of grey.

The normal structure of such a file is as follows:

Pos Count Type Description

0 4 Integer width of the video frame

4 4 Integer height of the video frame

8 width*height Array of Char raw image data

The two variables are saved in Little Endian Format. One has to convert the numbers when load-

ing in an BKG file on a platform with a different Endian format (e.g. Sun).

An algorithm for loading in an BKG file is as follows:

- open the file

- read in the first four bytes and store as width

- read in the next four bytes and store as height

- read in frame bits (width*height bytes)

- close file

 19

4. Compile Guide

In this section everything is explained that must be known concerning the compilation of the

"Videoclnt2_base" project. In order to properly compile the video client, the following software

is needed:

- Microsoft Visual C++ 6.0 SP5

- Microsoft Processor Performance Pack for Visual C++ 6 (vcpp5.exe)

 installed into Visual C++

- TINE protocol installed on the PC

- TINE ActiveX control ACOP (acop.ocx) properly registered on the PC

Inside the project, profiles for an Intel Compiler optimised version exist. If one uses this compiler

instead of the Microsoft Compiler built into Visual C++, it is possible to gain a significant speed

improvement. One has to choose 'Release_Intel' (for Pentium III) or 'Relase_Intel_P4' (for Penti-

um IV) as the profile and enable the Intel compiler. After this, the project can be recompiled us-

ing the Intel compiler.

When the workspace file ('videoclnt.dsw') in Visual C++ is opened the first time, one should

check whether the TINE ActiveX control "ACOP" is installed properly. One can check this by

opening the resources and select the main dialog (Dialog->IDD_VIDEOCLNT_DIALOG). If no

error message pops up that the ActiveX control could not be found, one can be pretty sure that it

is installed properly. If an error message pops up maybe the control is just not registered proper-

ly. Normally it resides in

"<WINDOWS HOME DIR>\system32\". The filename is "acop.ocx". To register it one has to

execute "regsvr32.exe acop.ocx" on the command line. If the control is not found or an error

message pops up while registering, one should consider reinstalling the TINE protocol.

Once it is verified that the control is registered properly, the next step would be to choose the

proper profile and rebuild the project (using Build->Rebuild All). Compiling the sources may

take a while. If there was an error, one should check the requirements once again. Please note that

there might be errors if the Intel profiles are compiled with the Microsoft compiler or vice versa.

